Parallel, Robust Geometric Multigrid for Adaptive High-Order Meshes and Highly Heterogeneous, Nonlinear Stokes Flow of Earth's Mantle

Johann Rudi

Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, USA

Advisor: Omar Ghattas

Main collaborators: Georg Stadler (NYU), Mike Gurnis (Caltech), Tobin Isaac (UT)

"Parallel, Robust GMG for Adaptive High-Order Meshes and Stokes Flow of Earth's Mantle" by Johann Rudi

Introduction

Introduction to mantle convection & plate tectonics

Central open questions:

- Energy dissipation in hinge zones
- Main drivers of plate motion: negative buoyancy forces or convective shear traction
- ► Role of slab geometries
- Accuracy of rheology extrapolations from experiments

- ► Mantle convection is the thermal convection in the Earth's upper ~3000 km
- It controls the thermal and geological evolution of the Earth
- Solid rock in the mantle moves like viscous incompressible fluid on time scales of millions of years

Computational challenges of global-scale mantle flow

- Severe nonlinearity, heterogeneity, and anisotropy of the Earth's rheology with a wide range of spatial scales
- ▶ Highly localized features with respect to Earth's radius (\sim 6371 km), like plate thickness \sim 50 km and shearing zones at plate boundaries \sim 5 km
- ▶ 6 orders of magnitude viscosity contrast within ~5 km thin plate boundaries
- ▶ Resolution down to \sim 1 km at plate boundaries (uniform mesh of Earth's mantle would result in computationally prohibitive $O(10^{12})$ degrees of freedom). Enabled by: adaptive mesh refinement
- ► Velocity approximation with high accuracy and local mass conservation. Enabled by: high-order discretizations

Mantle convection modeled as nonlinear Stokes flow

Rock in the mantle moves like a viscous, incompressible fluid (over millions of years) and can be modeled as a nonlinear Stokes system:

$$-\nabla \cdot \left[\mu(T, \boldsymbol{u}) \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\top} \right) \right] + \nabla p = \boldsymbol{f}(T)$$
$$\nabla \cdot \boldsymbol{u} = 0$$

The viscosity μ depends exponentially on the temperature, on a power of the second invariant of the strain rate tensor, incorporates plastic yielding and lower/upper bounds:

$$\mu(T, \boldsymbol{u}) = \max\left(\mu_{\min}, \min\left(\frac{\tau_{\text{yield}}}{2\dot{\varepsilon}(\boldsymbol{u})}, w \min\left(\mu_{\max}, a(T)\dot{\varepsilon}(\boldsymbol{u})^{\frac{1-n}{n}}\right)\right)\right)$$

Mantle convection modeled as nonlinear Stokes flow

Rock in the mantle moves like a viscous, incompressible fluid (over millions of years) and can be modeled as a nonlinear Stokes system:

$$\begin{aligned} -\nabla \cdot \left[\mu(T, \boldsymbol{u}) \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\top} \right) \right] + \nabla p &= \boldsymbol{f}(T) \\ \nabla \cdot \boldsymbol{u} &= 0 \end{aligned}$$

The viscosity μ depends exponentially on the temperature, on a power of the second invariant of the strain rate tensor, incorporates plastic yielding and lower/upper bounds:

$$\mu(T, \boldsymbol{u}) = \max \left(\mu_{\min}, \min \left(\frac{\tau_{\text{yield}}}{2\dot{\varepsilon}(\boldsymbol{u})}, w \min \left(\mu_{\max}, a(T) \dot{\varepsilon}(\boldsymbol{u})^{\frac{1-n}{n}} \right) \right) \right)$$

The Newton update (\tilde{u}, \tilde{p}) is computed as the inexact solution of:

$$-\nabla \cdot \left[\left(\mu \mathbf{I} + \dot{\varepsilon} \frac{\partial \mu}{\partial \dot{\varepsilon}} \frac{(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\top}) \otimes (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\top})}{\left\| (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\top}) \right\|_{F}^{2}} \right) (\nabla \tilde{\boldsymbol{u}} + \nabla \tilde{\boldsymbol{u}}^{\top}) \right] + \nabla \tilde{p} = -\boldsymbol{r}_{\text{mom}}$$

$$\nabla \cdot \tilde{\boldsymbol{u}} = -\boldsymbol{r}_{\text{mass}}$$

Methods & Algorithms

Solving the discretized Stokes system

Finite element discretization:

- ▶ High-order, inf-sup stable velocity-pressure pairings: $\mathbb{Q}_k \times \mathbb{P}_{k-1}^{\mathrm{disc}}$
- ▶ Local mass conservation at the element level, discont. pressure

Solving the discretized Stokes system

Finite element discretization:

- ▶ High-order, inf-sup stable velocity-pressure pairings: $\mathbb{Q}_k \times \mathbb{P}_{k-1}^{\mathrm{disc}}$
- Local mass conservation at the element level, discont. pressure

Coupled iterative solver with upper triangular block preconditioning:

$$\underbrace{\begin{bmatrix} \mathbf{A} & \mathbf{B}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix}}_{\text{Stokes operator}} \underbrace{\begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^\top \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix}^{-1}}_{\text{preconditioner}} \begin{bmatrix} \mathbf{u}' \\ \mathbf{p}' \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix}$$

Requires: (i) approx. inverse of the viscous stress block, $\tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1}$ (ii) approx. inverse of the Schur complement, $\tilde{\mathbf{S}}^{-1} \approx (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})^{-1}$

Solving the discretized Stokes system

Finite element discretization:

- ▶ High-order, inf-sup stable velocity-pressure pairings: $\mathbb{Q}_k \times \mathbb{P}_{k-1}^{\mathrm{disc}}$
- ▶ Local mass conservation at the element level, discont. pressure

Coupled iterative solver with upper triangular block preconditioning:

$$\underbrace{\begin{bmatrix} \mathbf{A} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{0} \end{bmatrix}}_{\text{Stokes operator}} \underbrace{\begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^{\top} \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix}^{-1}}_{\text{preconditioner}} \begin{bmatrix} \mathbf{u}' \\ \mathbf{p}' \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix}$$

Requires: (i) approx. inverse of the viscous stress block, $\tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1}$ (ii) approx. inverse of the Schur complement, $\tilde{\mathbf{S}}^{-1} \approx (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})^{-1}$

BFBT / Least Squares Commutator (LSC) method:

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}^{-1}\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}$$

with diagonal scaling, $\mathbf{D}^{-1} \coloneqq \operatorname{diag}(\mathbf{A})^{-1}$.

Comparison to state of the art for unstructured meshes

BFBT method [Elman, 1999]: pseudoinverse

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^\top)^+ = (\mathbf{B}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^\top)(\mathbf{B}\mathbf{B}^\top)^{-1}$$

Least Squares Commutators (LSC) [Elman, et al., 2006]:

Find commutator matrix X s.t. $(AB^\top - B^\top X) \approx 0$, by solving the least squares problem:

Find columns
$$\mathbf{x}_j$$
 of \mathbf{X} s.t. $\min_{\mathbf{x}_j} \left\| [\mathbf{A}\mathbf{B}^{\top}]_j - \mathbf{B}^{\top}\mathbf{x}_j \right\|_2^2$

$$\Rightarrow \ \mathbf{X} = (\mathbf{B}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^{\top})$$

$$(\mathbf{A}\mathbf{B}^{\top} - \mathbf{B}^{\top}\mathbf{X}) \approx \mathbf{0} \ \Rightarrow \ (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})^{-1} \approx (\mathbf{B}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^{\top})(\mathbf{B}\mathbf{B}^{\top})^{-1}$$

LSC gives same result for $\tilde{\mathbf{S}}^{-1}$ as pseudoinverse.

Q: Does this work for FE discretizations?...

BFBT method [Elman, 1999]: pseudoinverse

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^\top)^+ = (\mathbf{B}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^\top)(\mathbf{B}\mathbf{B}^\top)^{-1}$$

Least Squares Commutators (LSC) [Elman, et al., 2006]:

Find commutator matrix X s.t. $(AB^\top - B^\top X) \approx 0$, by solving the least squares problem:

Find columns
$$\mathbf{x}_j$$
 of \mathbf{X} s.t. $\min_{\mathbf{x}_j} \left\| [\mathbf{A}\mathbf{B}^{\top}]_j - \mathbf{B}^{\top}\mathbf{x}_j \right\|_2^2$

$$\Rightarrow \mathbf{X} = (\mathbf{B}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^{\top})$$

$$(\mathbf{A}\mathbf{B}^{\top} - \mathbf{B}^{\top}\mathbf{X}) \approx \mathbf{0} \ \Rightarrow \ (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})^{-1} \approx (\mathbf{B}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^{\top})(\mathbf{B}\mathbf{B}^{\top})^{-1}$$

LSC gives same result for $\tilde{\mathbf{S}}^{-1}$ as pseudoinverse.

Q: Does this work for FE discretizations?...no

Diagonally scaled BFBT method [Elman, et al., 2006]:

Find columns
$$\mathbf{x}_j$$
 of \mathbf{X} s.t. $\min_{\mathbf{x}_j} \left\| \mathbf{M}_1^{-1/2} [\mathbf{A} \mathbf{M}_2^{-1} \mathbf{B}^{\top}]_j - \mathbf{M}_1^{-1/2} \mathbf{B}^{\top} \mathbf{x}_j \right\|_2^2$

$$\Rightarrow \mathbf{X} = (\mathbf{B}\mathbf{M}_1^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\mathbf{B}^\top)$$
$$\Rightarrow \tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{M}_1^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{M}_2^{-1}\mathbf{B}^\top)^{-1}$$

Proposed scaling: For FE, use "diagonalized" velocity mass matrix,

diagonal:
$$\mathbf{M}_1 = \mathbf{M}_2 = \mathrm{diag}(\mathbf{M}_{m{u}})$$
 or lumped: $\mathbf{M}_1 = \mathbf{M}_2 = \tilde{\mathbf{M}}_{m{u}}$

Since $BM_1^{-1}B^{\top}$ can be understood as a Laplace operator for the pressure, approximate $(BM_1^{-1}B^{\top})^{-1}$ by a multigrid V-cycle.

Q: Is mass scaled BFBT effective for high viscosity variations?...

Diagonally scaled BFBT method [Elman, et al., 2006]:

Find columns
$$\mathbf{x}_j$$
 of \mathbf{X} s.t. $\min_{\mathbf{x}_j} \left\| \mathbf{M}_1^{-1/2} [\mathbf{A} \mathbf{M}_2^{-1} \mathbf{B}^{\top}]_j - \mathbf{M}_1^{-1/2} \mathbf{B}^{\top} \mathbf{x}_j \right\|_2^2$

$$\Rightarrow \mathbf{X} = (\mathbf{B}\mathbf{M}_1^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\mathbf{B}^\top)$$
$$\Rightarrow \tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{M}_1^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{M}_2^{-1}\mathbf{B}^\top)^{-1}$$

Proposed scaling: For FE, use "diagonalized" velocity mass matrix,

diagonal:
$$\mathbf{M}_1 = \mathbf{M}_2 = \mathrm{diag}(\mathbf{M}_{m{u}})$$
 or lumped: $\mathbf{M}_1 = \mathbf{M}_2 = \tilde{\mathbf{M}}_{m{u}}$

Since $BM_1^{-1}B^{\top}$ can be understood as a Laplace operator for the pressure, approximate $(BM_1^{-1}B^{\top})^{-1}$ by a multigrid V-cycle.

Q: Is mass scaled BFBT effective for high viscosity variations?...no

BFBT for scaled Stokes systems that arise in geodynamics [May, Moresi, 2008]:

$$\begin{bmatrix} \mathbf{D}_{\boldsymbol{u}}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_p^{-1/2} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{D}_{\boldsymbol{u}}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_p^{-1/2} \end{bmatrix}$$

Then the standard BFBT method yields its scaled version,

$$\Rightarrow \ \tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}_u^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}_u^{-1}\mathbf{A}\mathbf{D}_u^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}_u^{-1}\mathbf{B}^\top)^{-1}$$

Proposed scaling: heuristic, motivated by scaling of dimensional systems

$$[\mathbf{D}_{u}]_{i,i} = \max_{j} |[\mathbf{A}]_{i,j}|$$

Q: Is BFBT with this scaling effective for high viscosity variations?...

BFBT for scaled Stokes systems that arise in geodynamics [May, Moresi, 2008]:

$$\begin{bmatrix} \mathbf{D}_{\boldsymbol{u}}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_p^{-1/2} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{D}_{\boldsymbol{u}}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_p^{-1/2} \end{bmatrix}$$

Then the standard BFBT method yields its scaled version,

$$\Rightarrow \ \tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}_u^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}_u^{-1}\mathbf{A}\mathbf{D}_u^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}_u^{-1}\mathbf{B}^\top)^{-1}$$

Proposed scaling: heuristic, motivated by scaling of dimensional systems

$$[\mathbf{D}_{\boldsymbol{u}}]_{i,i} = \max_{j} |[\mathbf{A}]_{i,j}|$$

Q: Is BFBT with this scaling effective for high viscosity variations?... yes

New view on BFBT/LSC methods (1)

Let C be symm. pos. def. and let D be arbitrary,

Find
$$\mathbf{X}$$
 s.t. $\min_{\mathbf{X}} \left\| \mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} \mathbf{e}_{j} - \mathbf{B}^{\top} \mathbf{X} \mathbf{e}_{j} \right\|_{\mathbf{C}^{-1}}^{2}$ for all j

$$\Rightarrow \mathbf{X} = (\mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{C}^{-1}\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^{\top})$$

And we have a C^{-1} -orthogonal projection, i.e., the residual satisfies

$$\left\langle \mathbf{B}^{\top} \mathbf{e}_i, (\mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} - \mathbf{B}^{\top} \mathbf{X}) \mathbf{e}_j \right\rangle_{\mathbf{C}^{-1}} = \mathbf{0} \quad \text{for all } i, j,$$

therefore

$$\left(\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^{\top} - \mathbf{B}^{\top}\mathbf{X}\right)\mathbf{e}_{j} \perp_{\mathbf{C}^{-1}} \operatorname{Ran}(\mathbf{B}^{\top})$$
 for all j

New view on BFBT/LSC methods (2)

Goal: Effective and robust preconditioning of the Schur complement in Stokes systems with high viscosity variations

Note: Condition for optimal preconditioning $(\mathbf{B}\tilde{\mathbf{A}}^{-1}\mathbf{B}^{\top})\tilde{\mathbf{S}}^{-1}=\mathbf{I}$. By choosing $\mathbf{C}=\tilde{\mathbf{A}}$, we obtain equivalence between orthogonality and the condition for optimal preconditioning:

$$\left\langle \mathbf{B}^{\top} \mathbf{e}_{i}, (\mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} - \mathbf{B}^{\top} \mathbf{X}) \mathbf{e}_{j} \right\rangle_{\tilde{\mathbf{A}}^{-1}} = \mathbf{0} \quad \forall i, j \quad \Leftrightarrow \quad \tilde{\mathbf{S}} = \mathbf{B} \tilde{\mathbf{A}}^{-1} \mathbf{B}^{\top}$$

New view on BFBT/LSC methods (2)

Goal: Effective and robust preconditioning of the Schur complement in Stokes systems with high viscosity variations

Note: Condition for optimal preconditioning $(\mathbf{B}\tilde{\mathbf{A}}^{-1}\mathbf{B}^{\top})\tilde{\mathbf{S}}^{-1}=\mathbf{I}$. By choosing $\mathbf{C}=\tilde{\mathbf{A}}$, we obtain equivalence between orthogonality and the condition for optimal preconditioning:

$$\left\langle \mathbf{B}^{\top} \mathbf{e}_{i}, (\mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} - \mathbf{B}^{\top} \mathbf{X}) \mathbf{e}_{j} \right\rangle_{\tilde{\mathbf{A}}^{-1}} = \mathbf{0} \quad \forall i, j \quad \Leftrightarrow \quad \tilde{\mathbf{S}} = \mathbf{B} \tilde{\mathbf{A}}^{-1} \mathbf{B}^{\top}$$

Choices of \mathbf{C}, \mathbf{D} that are computationally feasible are limited.

Our choice: $C = D \coloneqq \operatorname{diag}(A)$, thus

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}^{-1}\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}$$

Parallel geometric multigrid (GMG)

- \blacktriangleright Accurate high-order L^2 -projection operators for restriction and interpolation during V-cycles, and for coarsening of the viscosity
- ► Coarsening of full fourth-order tensor coefficient of Jacobian
- ► Chebyshev accelerated point-Jacobi smoothers
- ► Velocity null spaces are projected out to establish stable convergence

h-dependence of GMG components & Stokes precond.

p-dependence of GMG components & Stokes precond.

Computational results using real Earth data

Computational results: Solver Robustness

Robustness of linear Stokes solver w.r.t. plate boundary thickness

Plate boundary thickness (km)	DOF	GMRES #iter for solving $\mathbf{A}\mathbf{u}=\mathbf{f}$	GMRES #iter for solving Stokes
15	1.16B	115	461
10	1.41B	129	488
5	3.01B	123	445

Robustness of inexact Newton-Krylov nonlinear solver w.r.t plate boundary thickness

Plate boundary thickness (km)	DOF (at nl. solution)	Newton #steps	GMRES #iter (for all Newton steps)
15	1.00B	25	3915
10	1.63B	27	4645
5	4.78B	29	6112

Computational results: Algorithmic scalability

(Fix problem parameters and refine the mesh)

Computational results: Weak scalability

(Increase core count and problem size simultaneously)

Computational results: Strong scalability

(Increase core count while problem size stays fixed)

Computational results: Contribution to science

Effective viscosity at nonlinear solution and surface velocity

Normal stress at the surface and surface velocity

Summary of key contributions

- Parallel geometric multigrid for the viscous stress block on adaptive meshes (my impl.; based on AMG-only solver and parallel AMR library)
- p- and h-independent multigrid convergence through improvement of projection operators (my dev.)
- ► Stable convergence in presence of rotation null spaces (my dev.)
- Stable coarsening of anisotropic fourth-order tensor coefficient in Jacobian (my dev.)

- Geometric multigrid based BFBT; first matrix-free implementation of BFBT (my dev.)
- ► Inexact Newton-Krylov for complex Earth rheology with dynamic mesh refinement (my impl.; ideas in collaboration with G. Stadler)
- Parallel optimizations, e.g., MPI communicator reduction, OpenMP threading (my impl.)
- ► Parallel scalability on full system JUQUEEN supercomputer with 458,752 CPU cores (lead dev. in collaboration with IBM Research – Zürich)